Diffusion of macromolecules in self-assembled cellulose/hemicellulose hydrogels.
نویسندگان
چکیده
Cellulose hydrogels are extensively applied in many biotechnological fields and are also used as models for plant cell walls. We synthesised model cellulosic hydrogels containing hemicelluloses, as a biomimetic of plant cell walls, in order to study the role of hemicelluloses on their mass transport properties. Microbial cellulose is able to self-assemble into composites when hemicelluloses, such as xyloglucan and arabinoxylan, are present in the incubation media, leading to hydrogels with different nano and microstructures. We investigated the diffusivities of a series of fluorescently labelled dextrans, of different molecular weight, and proteins, including a plant pectin methyl esterase (PME), using fluorescence recovery after photobleaching (FRAP). The presence of xyloglucan, known to be able to crosslink cellulose fibres, confirmed by scanning electron microscopy (SEM) and (13)C NMR, reduced mobility of macromolecules of molecular weight higher than 10 kDa, reflected in lower diffusion coefficients. Furthermore PME diffusion was reduced in composites containing xyloglucan, despite the lack of a particular binding motif in PME for this polysaccharide, suggesting possible non-specific interactions between PME and this hemicellulose. In contrast, hydrogels containing arabinoxylan coating cellulose fibres showed enhanced diffusivity of the molecules studied. The different diffusivities were related to the architectural features found in the composites as a function of polysaccharide composition. Our results show the effect of model hemicelluloses in the mass transport properties of cellulose networks in highly hydrated environments relevant to understanding the role of hemicelluloses in the permeability of plant cell walls and aiding design of plant based materials with tailored properties.
منابع مشابه
Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression
Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the...
متن کاملInterpenetrating Network Hydrogels: Mechanical, Swelling and Controlled Drug Release Properties
The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemice...
متن کاملDependence of Self-Assembled Peptide Hydrogel Network Structure on Local Fibril Nanostructure.
Physically cross-linked, fibrillar hydrogel networks are formed by the self-assembly of β-hairpin peptide molecules with varying degrees of strand asymmetry. The peptide registry in the self-assembled state can be used as a design element to generate fibrils with twisting, nontwisting, or laminated morphology. The mass density of the networks varies significantly, and can be directly related to...
متن کاملSolid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.
Until recently, the 3D architecture of plant cell walls was poorly understood due to the lack of high-resolution techniques for characterizing the molecular structure, dynamics, and intermolecular interactions of the wall polysaccharides in these insoluble biomolecular mixtures. We introduced multidimensional solid-state NMR (SSNMR) spectroscopy, coupled with (13)C labelling of whole plants, to...
متن کاملDiffusion of Macromolecules in Polymer Solutions and Gels: A Laser Scanning Confocal Microscopy Study
Laser scanning confocal microscopy combined with fluorescence recovery after photobleaching is an effective tool to measure the diffusion coefficients of macromolecules in cross-linked hydrogels and polymer solutions. In this study, the effects of enzyme treatment on the diffusion of macromolecules (FITC-dextran) in guar solutions and titanium-guar hydrogels are examined. Enzyme treatment with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 20 شماره
صفحات -
تاریخ انتشار 2015